Safe Virtual Machine

for C in less than 3 KiBytes

Bernhard H.C. Sputh , Eric Verhulst, Artem Barmin,

and Vitaliy Mezhuyev
Email: {bernhard.sputh, eric.verhulst,
Artem.barmin, vitaliy.mezhuyev}@altreonic.com

http://www.altreonic.com

From Deep Space to Deep Sea

ST

Altreonic
Push Button High Reliability

Outline

Altreonic

 History of Altreonic

» Design of the Safe Virtual Machine for C (SVM)

* Integrating the SVM in the OpenComRTOS-Suite
» Performance Figures

» Conclusions

» Further Work

24/02/2011 Visit us at Booth 11-101 2

History of Altreonic

Altreonic

« Eonic (Eric Verhulst): 1989 — 2001

. Developed Virtuoso a Distributed RTOS

« Communicating Sequential Processes as foundation of
the “pragmatic superset of CSP”

« Open License Society: 2004 — now

« R&D on Systems and Software Engineering

« Developed OpenComRTOS using Formal Methods
« Altreonic: 2008 — now

« Commercialises OpenComRTOS

. Basedin Linden (near Leuven) Belgium

24/02/2011 Visit us at Booth 11-101 3

Design goals for the SVM

Altreonic

. Distributed heterogenous systems are hard to maintain
. Each target runs different binary, staticly compiled
. Different compilers, different versions, different CPU variants

. If system is large, probability that some nodes will fail or
present issues is high

« Sitill, system must remain operational during maintenance
. Dynamic code loading, independently of target CPU

Back-up functionality for mis-behaving tasks

Boundary conditions:

. Cis most often used embedded programming language
« Memory resources are strictly limited

24/02/2011 Visit us at Booth 11-101 4

Design of the SVM

Altreonic

« Execution engine for OpenComRTOS Tasks,
written in ANSI-C.

« The C-Code gets translated into a binary using a
standard C compiler

« The SVM interprets this binary format.

« One Instance of the SVM executes in one
OpenComRTOS Task, as Guest-Task.

o OpenComRTOS virtualises hardware for the SVM
Guest-Task

24/02/2011 Visit us at Booth 11-101 5

Selecting a VM Instruction Set

Altreonic

. Ciriteria on the Instruction Set (IS):
« Compact byte code, i.e. small binaries
« Not too many instructions
« Auvailability of good toolchains / compilers

« Instruction Sets evaluated : MIPS, ARM Thumb-1, and
Xilinx Microblaze

« Chosen Instruction Set: ARM Thumb-1:

. Compact instruction set, all instructions, except one, only
have 16bit

« Widely used within the industry
. Butit can be any other IS as well

24/02/2011 Visit us at Booth 11-101 6

From the IS to the Interpreter
Source Code — step 1

Altreonic

« The complete Instruction Set (IS) was modeled in a

Domain Specific Language.

« The VM source code gets generated.

. The generator tool chain was written in Haskell.

24/02/2011 Visit us at Booth 11-101

From the IS to the Interpreter
Source Code — step 2

Altreonic

Instruction Set Documentation

l Manual Translation

Top-Level-Model
Encoding and Actions for each Instruction

Input

Generator

Y

Intermediate-Level-Model
Finite State Machine for each Instruction
Instruction Encoding for each Instruction

Lowest-Level-Model
One Finite State Machine

"Output

C Source Code of the Interperter

24/02/2011 Visit us at Booth 11-101

Top Level Model of Push 1

Altreonic

Command " push"
(Opcode ["1011","0","10"])
[Operand "LR' 8 8,
Operand "reg list" 7 O]
push

24/02/2011 Visit us at Booth 11-101 g

Top Level Model of Push 2

Altreonic

push = do
when' (v "LR' .==1i1) $
do

r "SP" .-=i4
m[r "SP" .+i0] .=r "LR'
for' ([("i",i0),("j",i1)], v"i" .<is8,
do {v "i" .+=il;v "j" .<<=i1}) $

when' ((v "reg list" .&v "j") .>i0)%
do
r "SP* .-=14
m[r "SP" .+i0] .=rv "i"

24/02/2011 Visit us at Booth 11-101 10

Integrating the SVM in the

SC
OpenComRTOS-Suite Altreonic
« Building the binary

« Virtualising the underlying OS and hardware
« Using the SVM inside an OpenComRTOS-System

24/02/2011 Visit us at Booth 11-101 1

Building the Binary

Altreonic

« OpenComRTOS is designed to support heterogeneous
systems, i.e. systems that consist of different CPU-
Architectures, which are called a "Platform’

« The SVM is just another platform that OpenComRTOS must
support

. The SVM-Platform provides all the necessary support code
in order to compile and link an OpenComRTOS-Task to form
a binary file which can be loaded into the SVM.

« Furthermore, access libraries for all components that have
been developed for OpenComRTOS can be used from
within an SVM-Task.

24/02/2011 Visit us at Booth 11-101 12

Virtualising the underlying OS 1

Altreonic

o OpenComRTOS has two principal entities:

. Tasks:

Prioritised (256 priorities are available);

Tasks do not share memaory;

Tasks communicate with Hubs using Packets.

- Also the Kernel is a task
« Hubs:

- Generic synchronisation primitive in OpenComRTOS

- Hubs operate system-wide, but transparently — Virtual
Single Processor (VSP) programming model.

24/02/2011 Visit us at Booth 11-101 13

Virtualising the underlying OS 2

Altreonic

« Services offered by Hubs
. Event — Synchronisation on a Boolean value;
« Semaphore — Synchronisation with a counter;

. Port — Synchronisation and exchanging a packet, i.e.
data transport (CSP Channel like);

« Resource — Locking mechanism, with ownership;
« FIFO — Buffered packet communication;
« User defined Hubs are possible!

24/02/2011 Visit us at Booth 11-101 14

Virtualising the underlying OS 3

Altreonic

« Accessing to the underlying OS-API is done by using a
Software Interrupt (SWI instruction ARM Thumb-1)

« Due to the OpenComRTOS API, being represented by the
exchange of L1_Packets, only one function had to be
provided: L1_buildAndIinsertRequest()

. Additionally the SVM-Platform gets currently an extension to
allow Guest-Tasks direct access to the memory of the Host

« Using the native OpenComRTOS, the SVM tasks have full
access to underlying hardware, including other processing
nodes in the network

24/02/2011 Visit us at Booth 11-101 15

Using the SVM

Altreonic

« The SVM consist of two elements:

« Topology: SVM-Platform:
« OpenComRTOS Virtualisation
« Build System
« Component access libraries
« Application: SVM-Component:
« Virtual Machine Task
. Control Task

24/02/2011 Visit us at Booth 11-101 16

Using the SVM 1

Altreonic

Help

g a [Fe B

L1_TestSemaphore W

L1_TestSemaphore_W

Fie Edt Build Tools
SogH@| saBl9
2| Topcooy” Application*
ArmNode:
Task1l
5 ouput | EmorLst

ArmNode:
Sema2

24/02/2011

Visit us at Booth 11-101 17

Using the SVM 2

Altreonic

Fle Edt View Buld Took Help
A0S @] %m0 8 o [F]@em @wnz @amertecms N N R[] Q
2| Tomony | ovicion T3
=
ArmNode
51 outut |Ermor st
24/02/2011 Visit us at Booth 11-101 18

Using the SVM 3

NS ARM.S:
File Edit

Altreonic

Buld Toos Help
DS % 5B 0 a] @em @uwnz @amcortexms N N (@[] Q
2| Tomony | ovicion xg
J};ﬁ‘)&
ArmNode
svm
(=] Output | Error List
24/02/2011 Visit us at Booth 11-101 19
g Altreonic

A ARM_S:

Fle Edt View Buld Took Help

s B RN 1) & oa GE s AR =F8x &l
Topology . Application

Sann3) sapon sald

ArmNode:
LoaderTask

L1_TestSemaphore W

&

Saniadoid

ArmNode:
Sema2
5 ouput | EmorLst :
24/02/2011 Visit us at Booth 11-101 20

g Altreonic
IR - b oa
3| Topdogy | Appicaton * Taska_epc
& Frrhctude S Vmoer vices ovimorrent s>
i 4 ‘#include<StdioHostService/StdioHostClient .h>
] 5
i 6 void Task2 ep(Ll TaskArguments Arguments)
74
8 L1 BYTE buffer[1024]; I
g L1 UINT32 readBytes = 0;
10 L1_UINT32 fileHandle = 0;
11 /* Opening the executable file, for reading and in binary format */
12 if (RC_FAIL == Shs_openFile W(Shsl, "Task svm.bin", "rb", &fileHandle))
13 {
14 printf ("Could not open file.\n"):
15 exit(-1);
16 ¥
17 /* Copying the contents of the executable file into the local buffer */
18 Shs_readFromFile W(Shsl, fileHandle, buffer, 1024, &readBytes);
19 /* Closing the file after reading */
20 Shs_closeFile W(Shsl, fileHandle);
21 /* Loading the task into the program memory of the SVM. */
22 Svm_loadTask (Svml, buffer, readBytes);
23 /* Starting the execution */
24 Svm_startTask (Svml) ;
25|}
26
51 oumt Erortit
ins Cail
24/02/2011 Visit us at Booth 11-101 21

Performance Figures

Altreonic

* Memory Requirements of the isolated SVM.

» Comparing the memory requirements of a System
with and without using the SVM.

» Performance Degradation, caused by the SVM.

24/02/2011 Visit us at Booth 11-101 22

Memory Requirements of the SVM

Altreonic

Coinsaton

3,818 Byte 476 Byte
-Os 2,838 Byte 476 Byte

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009gl arm-none-eabi
toolchain. The figures include the Supervisor and Interpreter tasks, and their helper
functions. It does not include any data memory for the Guest-Task.

24/02/2011 Visit us at Booth 11-101 23

Impact on Memory Requirements

Altreonic

Semaphore Loop without Safe Virtual Machine:

ArmNode 4068 892 1708 6668 OxlaOc

Semaphore Loop with the Safe Virtual Machine:

ArmNode 8140 1736 4736 14612 0x3914
Task_svm 696 24 60 780 0x30c

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009gl arm-none-eabi
toolchain, with compiler optimisation —Os.

24/02/2011 Visit us at Booth 11-101 24

Performance impact

Altreonic

* In the previously presented system, the runtime of
the Semaphore loop increased by a factor of 7.26

* Depends on:

1. The native code was compiled for ARM-Thumb-2
which might give better performance

2. The current Instruction decoder implementation is
not ideal, caused by the irregularity of the ARM-
Thumb-1 Instruction set (not a restriction in HW, but
for SW)

24/02/2011 Visit us at Booth 11-101 25

SVM application domain

Altreonic

* Not intended for high speed computations!
* Dynamic code with small memory requirements
» Target independent execution
» Typical use:
» Diagnostics, post-deployment
» Back-up tasks for natively failing application tasks
* Run-time monitoring and logging
» Execute existing binary code without compilation
» Might require regenerating SVM for other IS.

24/02/2011 Visit us at Booth 11-101 26

Conclusions

Altreonic

. Generating the source code of the Virtual Machine, from
High-level models made it easy to get the SVM code right.

« We can adjust the SVM to support almost any instruction
set, by developing a top-level model of it.

o The OpenComRTOS Architecture made it easy to implement
the OS-Virtualisation.

« The SVM brings OS-Virtualisation to deeply embedded
systems (minimal overhead of 8kiByte)

« The SVM is useful in many Scenarios:

« Isolating OpenComRTOS Tasks from each other.
. Diagnostic of the Host-System

« Runtime reconfiguration, for high reliability systems.

24/02/2011 Visit us at Booth 11-101 27

Further Work

Altreonic

« Automatic Stack monitoring by the SVM.

« Mobility of SVM-Tasks, i.e. moving tasks during
runtime from one SVM instance to another instance.

« Native execution of SVM-Tasks, if the CPU
supports the ARM-Thumb-1 instruction set.

« Improving the performance of the instruction
decoder.

24/02/2011 Visit us at Booth 11-101 28

Altreonic

Questions?

24/02/2011 Visit us at Booth 11-101 29

Thank You for your attention

Visit us in Hall 11.0 Booth 101

Altreonic

“If it doesn't work, it must be art.
If it does, it was real engineering”

24/02/2011 Visit us at Booth 11-101 30

