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History of Altreonic

Altreonic

« Eonic (Eric Verhulst): 1989 — 2001

. Developed Virtuoso a Distributed RTOS

« Communicating Sequential Processes as foundation of
the “pragmatic superset of CSP”

« Open License Society: 2004 — now

« R&D on Systems and Software Engineering

« Developed OpenComRTOS using Formal Methods
« Altreonic: 2008 — now

« Commercialises OpenComRTOS

. Basedin Linden (near Leuven) Belgium
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Design goals for the SVM

Altreonic

. Distributed heterogenous systems are hard to maintain
. Each target runs different binary, staticly compiled
. Different compilers, different versions, different CPU variants

. If system is large, probability that some nodes will fail or
present issues is high

« Sitill, system must remain operational during maintenance
. Dynamic code loading, independently of target CPU

Back-up functionality for mis-behaving tasks

Boundary conditions:

. Cis most often used embedded programming language
« Memory resources are strictly limited
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Design of the SVM

Altreonic

« Execution engine for OpenComRTOS Tasks,
written in ANSI-C.

« The C-Code gets translated into a binary using a
standard C compiler

« The SVM interprets this binary format.

« One Instance of the SVM executes in one
OpenComRTOS Task, as Guest-Task.

o OpenComRTOS virtualises hardware for the SVM
Guest-Task
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Selecting a VM Instruction Set

Altreonic

. Ciriteria on the Instruction Set (IS):
« Compact byte code, i.e. small binaries
« Not too many instructions
« Auvailability of good toolchains / compilers

« Instruction Sets evaluated : MIPS, ARM Thumb-1, and
Xilinx Microblaze

« Chosen Instruction Set: ARM Thumb-1:

. Compact instruction set, all instructions, except one, only
have 16bit

« Widely used within the industry
. Butit can be any other IS as well
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From the IS to the Interpreter
Source Code — step 1

Altreonic

« The complete Instruction Set (IS) was modeled in a

Domain Specific Language.

« The VM source code gets generated.

. The generator tool chain was written in Haskell.
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From the IS to the Interpreter
Source Code — step 2

Altreonic

Instruction Set Documentation

l Manual Translation

Top-Level-Model
Encoding and Actions for each Instruction

Input

Generator

Y

Intermediate-Level-Model
Finite State Machine for each Instruction
Instruction Encoding for each Instruction

Lowest-Level-Model
One Finite State Machine

"Output

C Source Code of the Interperter
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Top Level Model of Push 1

Altreonic

Command " push"
(Opcode ["1011","0","10"])
[ Operand "LR' 8 8,
Operand "reg list" 7 O]
push
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Top Level Model of Push 2

Altreonic

push = do
when' (v "LR' .==1i1) $
do

r "SP" .-=i4
m[r "SP" .+i0] .=r "LR'
for'  ([("i",i0),("j",i1)], v"i" .<is8,
do {v "i" .+=il;v "j" .<<=i1}) $

when' ((v "reg list" .&v "j") .>i0)%
do
r "SP* .-=14
m[r "SP" .+i0] .=rv "i"
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Integrating the SVM in the

SC
OpenComRTOS-Suite Altreonic
« Building the binary

« Virtualising the underlying OS and hardware
« Using the SVM inside an OpenComRTOS-System
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Building the Binary

Altreonic

« OpenComRTOS is designed to support heterogeneous
systems, i.e. systems that consist of different CPU-
Architectures, which are called a "Platform’

« The SVM is just another platform that OpenComRTOS must
support

. The SVM-Platform provides all the necessary support code
in order to compile and link an OpenComRTOS-Task to form
a binary file which can be loaded into the SVM.

« Furthermore, access libraries for all components that have
been developed for OpenComRTOS can be used from
within an SVM-Task.
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Virtualising the underlying OS 1

Altreonic

o OpenComRTOS has two principal entities:

. Tasks:

Prioritised (256 priorities are available);

Tasks do not share memaory;

Tasks communicate with Hubs using Packets.

- Also the Kernel is a task
« Hubs:

- Generic synchronisation primitive in OpenComRTOS

- Hubs operate system-wide, but transparently — Virtual
Single Processor (VSP) programming model.
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Virtualising the underlying OS 2

Altreonic

« Services offered by Hubs
. Event — Synchronisation on a Boolean value;
« Semaphore — Synchronisation with a counter;

. Port — Synchronisation and exchanging a packet, i.e.
data transport (CSP Channel like);

« Resource — Locking mechanism, with ownership;
« FIFO — Buffered packet communication;
« User defined Hubs are possible!
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Virtualising the underlying OS 3

Altreonic

« Accessing to the underlying OS-API is done by using a
Software Interrupt (SWI instruction ARM Thumb-1)

« Due to the OpenComRTOS API, being represented by the
exchange of L1_Packets, only one function had to be
provided: L1_buildAndIinsertRequest()

. Additionally the SVM-Platform gets currently an extension to
allow Guest-Tasks direct access to the memory of the Host

« Using the native OpenComRTOS, the SVM tasks have full
access to underlying hardware, including other processing
nodes in the network
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Using the SVM

Altreonic

« The SVM consist of two elements:

« Topology: SVM-Platform:
« OpenComRTOS Virtualisation
« Build System
« Component access libraries
« Application: SVM-Component:
« Virtual Machine Task
. Control Task
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Using the SVM 1

Altreonic
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Using the SVM 2

Altreonic
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Using the SVM 3

NS ARM.S:
File  Edit

Altreonic

Buld Toos  Help
DS % 5B 0 a ] @em @uwnz @amcortexms N N (@[] Q
2| Tomony | ovicion xg
J};ﬁ‘)&
ArmNode
svm
(=] Output | Error List
24/02/2011 Visit us at Booth 11-101 19
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g Altreonic
IR - b oa
3| Topdogy | Appicaton * Taska_epc
& Frrhctude S Vmoer vices ovimorrent s>
i 4 ‘#include<StdioHostService/StdioHostClient .h>
] 5
i 6 void Task2 ep(Ll TaskArguments Arguments)
74
8 L1 BYTE buffer[1024]; I
g L1 UINT32 readBytes = 0;
10 L1_UINT32 fileHandle = 0;
11 /* Opening the executable file, for reading and in binary format */
12 if (RC_FAIL == Shs_openFile W(Shsl, "Task svm.bin", "rb", &fileHandle))
13 {
14 printf ("Could not open file.\n"):
15 exit(-1);
16 ¥
17 /* Copying the contents of the executable file into the local buffer */
18 Shs_readFromFile W(Shsl, fileHandle, buffer, 1024, &readBytes);
19 /* Closing the file after reading */
20 Shs_closeFile W(Shsl, fileHandle);
21 /* Loading the task into the program memory of the SVM. */
22 Svm_loadTask (Svml, buffer, readBytes);
23 /* Starting the execution */
24 Svm_startTask (Svml) ;
25|}
26
51 oumt Erortit
ins Cail
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Performance Figures

Altreonic

* Memory Requirements of the isolated SVM.

» Comparing the memory requirements of a System
with and without using the SVM.

» Performance Degradation, caused by the SVM.
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Memory Requirements of the SVM

Altreonic

Coinsaton

3,818 Byte 476 Byte
-Os 2,838 Byte 476 Byte

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009gl arm-none-eabi
toolchain. The figures include the Supervisor and Interpreter tasks, and their helper
functions. It does not include any data memory for the Guest-Task.
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Impact on Memory Requirements

Altreonic

Semaphore Loop without Safe Virtual Machine:

ArmNode 4068 892 1708 6668 OxlaOc

Semaphore Loop with the Safe Virtual Machine:

ArmNode 8140 1736 4736 14612 0x3914
Task_svm 696 24 60 780 0x30c

Compiled for ARM-Cortex-M3, using the Code Sourcery 2009gl arm-none-eabi
toolchain, with compiler optimisation —Os.
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Performance impact

Altreonic

* In the previously presented system, the runtime of
the Semaphore loop increased by a factor of 7.26

* Depends on:

1. The native code was compiled for ARM-Thumb-2
which might give better performance

2. The current Instruction decoder implementation is
not ideal, caused by the irregularity of the ARM-
Thumb-1 Instruction set (not a restriction in HW, but
for SW)
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SVM application domain

Altreonic

* Not intended for high speed computations!
* Dynamic code with small memory requirements
» Target independent execution
» Typical use:
» Diagnostics, post-deployment
» Back-up tasks for natively failing application tasks
* Run-time monitoring and logging
» Execute existing binary code without compilation
» Might require regenerating SVM for other IS.
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Conclusions

Altreonic

. Generating the source code of the Virtual Machine, from
High-level models made it easy to get the SVM code right.

« We can adjust the SVM to support almost any instruction
set, by developing a top-level model of it.

o The OpenComRTOS Architecture made it easy to implement
the OS-Virtualisation.

« The SVM brings OS-Virtualisation to deeply embedded
systems (minimal overhead of 8kiByte)

« The SVM is useful in many Scenarios:

« Isolating OpenComRTOS Tasks from each other.
. Diagnostic of the Host-System

« Runtime reconfiguration, for high reliability systems.
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Further Work

Altreonic

« Automatic Stack monitoring by the SVM.

« Mobility of SVM-Tasks, i.e. moving tasks during
runtime from one SVM instance to another instance.

« Native execution of SVM-Tasks, if the CPU
supports the ARM-Thumb-1 instruction set.

« Improving the performance of the instruction
decoder.
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Altreonic

Questions?
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Thank You for your attention

Visit us in Hall 11.0 Booth 101

Altreonic

“If it doesn't work, it must be art.
If it does, it was real engineering”
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